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I. ABSTRACT

The COVID-19 viral outbreaks have exceeded our expectations and have shattered all

prior records for virus outbreaks. Corona virus infection creates a dangerous sickness that

can lead to death due to significant alveolar damage and progressive respiratory collapse.

The application of computer vision technology to detect and classify this virus from a chest

X-ray picture can be a very valuable addition to the less sensitive traditional method of de-

tecting COVID-19, namely reverse transcription polymerase chain reaction (RT-PCR).This

automated technique has the potential to improve on current COVID-19 treatment methods

while also alleviating the scarcity of skilled physicians in rural areas. Again, segmenting dis-

eased regions from a chest X-ray picture can aid medical practitioners in gaining insight into

the afflicted area. So, in this research, we employed a deep learning-based transfer learning

approach for CT-scan and X-ray image classification, and a U-Net architecture for segmen-

tation to segment the afflicted region. On the available X-ray dataset, 99.7% classification

accuracy was obtained, 99.4% on the available CT-scan dataset, and 87% average accuracy

from the segmentation process.

II. INTRODUCTION

In December 2019, the new corona virus (COVID-19) spreads from Wuhan, China, to the rest

of the world.First, it assaults the lungs and respiratory system of a human body, earning it the

designation (SARS-COVID-19), which stands for severe acute respiratory syndrome. As a result,

screening mechanisms for this organ, such as X-rays and Computer Tomography (CT) images,

can play an essential role in successfully recognizing disorders and taking appropriate steps. With

the use of Computer Vision and Deep Learning technologies, this approach may also be used to

facilitate the creation of curative medicine. Again, segmenting the affected region from this organ

can aid medical workers in providing early treatment, care, and isolation in order to prevent the

infection from spreading.
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Medical radiography imaging is used as a supplement to the RT-PCR test to prevent the dev-

astating infection of COVID-19. This is predicated on the fact that most COVID-19 patients had

clinical symptoms of lung infection on chest X-rays . In addition, a CT scan is required to monitor

the severity of the sickness. CT scan tests, on the other hand, have a serious constraint in terms

of diagnostic time: even expert radiologists take roughly 21.5 minutes to review each case’s test

data. During the pandemic epidemic, skilled radiologists are in short supply, making it difficult to

detect possibly infected patients in a timely manner. As a result, automated diagnosis systems are

in great demand.

III. DATASETS

We have utilized different datasets for classification and segmentation. For classification, we

have used both Covid and Non-Covid pictures of X-ray and CT-scans. We used 13816 images

for X-ray, consisting of 3616 Covid-19 and 10200 Non-Covid images. We also used 14500 images

for CT-scans, consisting of 7593 Covid-19 and 6893 Non-Covid images.For segmentation, we have

used 2 datasets.Both the datasets consists of CT-scans along with their infection masks. In the

first dataset, it consists of 1200 images with the infection mask. In the second dataset, it consists

of 1564 CT-scans along with their infection masks. We considered 70% of the datasets used for

training, 10% for validation and 20% for testing purpose. To extract the most out of the data in this

study, we applied a variety of data preparation approaches. We have applied variant of Adaptive

Histogram Equalization (AHE) called as CLAHE [1] to improve the contrast of the images. We

reduced images to the core section to concentrate on the primary component.

Dataset Covid-19 Normal

CT-scans [2] 7593 6893

X-ray [3] 3616 10200

TABLE I: CT-scans and X-ray Datasets
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Dataset Mask Images

Dataset-1 [4] 1200

Dataset-2 [5] 1564

TABLE II: Infection Mask Datasets

IV. METHODOLOGY

The overall methodology is given in Fig. 1. For classification and segmentation, we used two

different approaches. We employed an uncertainity aware transfer learning approach for classifica-

tion. We utilized the U-net framework for segmentation. Starting with classification, the first step

is processing the data. We have removed the images which are blurry, not clear and not useful.

Then, we applied Adaptive Histogram Equalization (AHE) called as CLAHE [1] to improve the

contrast of the images and cropped the images to the core part.

FIG. 1: The flow chart of our suggested methodology.
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A. Classification

The transfer learning technique will be used to train machine learning models for COVID-19

identification. Two significant factors drive our decision to use a transfer learning architecture to

tackle the COVID-19 detection problem:

• Training DNN/CNN models necessitates a large quantity of data, which is not feasible for

COVID-19 because the number of captured and tagged photos is often in the hundreds.

• DNN/CNN model training is computationally intensive. Even if there are dozens or millions

of photos available, it’s still a good idea to test the utility of existing pretrained models for

data representation and feature extraction first.

To detect the presence of COVID-19, the suggested framework only relies on the information

content of X-rays and CT images. In this report, we evaluate two best pretrained networks on

the ImageNet data set and import and adjust them for COVID-19 identification. ResNet50 and

InceptionResNetV2 are the names of these networks. All of these networks have demonstrated

cutting-edge performance in accurately identifying photos from the ImageNet data set. Because

these networks have numerous layers and millions of trainable parameters, training them is compu-

tationally intensive. The proposed framework’s key claim is that there are basic parallels between

image detection/recognition tasks and the COVID-19 binary classification issue utilizing pictures.

As a result, learnings from the former may be securely transferred to the latter to reduce the

training period. While all two pretrained networks were created using non-medical pictures, it is

plausible to believe that their alteration of X-ray and CT image pixels would aid in categorization.

As shown in Fig. 2, during the training phase, the convolutional layer parameters are maintained

locked. For hierarchical feature extraction, the convolutional layers of these two pretrained models

are fed by X-ray and CT images. Different machine learning classifiers replace the front end of the

pretrained networks to differentiate Covid and non-Covid situations. It’s worth noting that the

pooling process is skipped in the pretrained networks’ final convolutional layer. This is to prevent

informative characteristics from being lost before they are passed on to categorization models.

We also studied the uncertainity associated with the classification models.There are two types

of uncertainties, which needs to be considered for deep learning models.

1. Aleatoric uncertainty is a type of uncertainty that is caused by noise in the data generation

process. This kind of unpredictability can’t be eliminated.
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FIG. 2: The suggested transfer learning-based architecture for COVID-19 detection utilizing

X-ray and CT images is depicted in a block diagram.

2. The term epistemic uncertainty refers to the lack of knowledge about the model. Unlike

aleatoric uncertainty, epistemic uncertainty may be reduced by collecting more training

samples from a variety of contexts.

We will concentrate on epistemic uncertainty in this article since it is intimately related to the

generalization capacity of models for fresh data. The epistemic uncertainty might be calculated

using the prediction variance. As a measure of epistemic uncertainty, we calculate prediction

entropy.

As a measure of epistemic uncertainty, we calculate prediction entropy. The prediction entropy

is a tool for assessing the degree of uncertainty in scores provided by various models. The entropy

of the mean predictive distribution is used to compute the ensemble epistemic uncertainty (by

averaging all predicted distributions)

p̂(y|x) = 1

N

N∑
i=1

pθi(y|x) (1)
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H(p̂(y|X)) =

C∑
i=0

p̂(yi|x)logp̂(yi|x) (2)

where θi is the set of parameters for the i th network element and C ranges over all classes. For

instance, suppose that for a given input, an individual neural network predicts that the input

belongs to class 1 with x amount of probability and to class 0 with y amount. If we repeat this

procedure ten times for that specified input, it is similar to ensembling ten networks for predicting

the output probability. The final output probability can be calculated using (1). Now, imagine the

average probability predicts that an input belongs to class 1 and 0 with 0.6 and 0.4, respectively.

Based on (2) the prediction entropy can be calculated as 0.6 ∗ log(0.6) + 0.4 ∗ log(0.4). It is

obvious that the prediction entropy becomes zero when the output is assigned to a class with high

probability and becomes maximum when the network is uncertain about its outcome.

B. Segmentation

The general approach to semantically segmenting pictures is to develop a structure that collects

features through consecutive convolutions and outputs a segmentation map.

U-NET was created with the intention of comprehending and segmenting medical images. It

is a significant architecture in the medical imaging automation society and has a wide range of

applications in the sector. In this part, we go through the network’s core technological aspects and

how they contribute to successful outcomes.

FIG. 3: Flow Diagram of the U-Net model that we have used

This network’s design is divided into three parts: encoding, decoding, and attention block.

Following ReLU layers, the encoding route consists of numerous patches of convolutions with

filters of size 33 and unity strides in both directions. The encoder network consists of 4 blocks.

In each block we would downscale the image. Each block consists of Convolutional layer, ReLU

activation, Max Pooling layer, Batch Normalization, Dropout. This route extracts the input’s
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essential features and returns a feature vector of a certain length. The second route network is

known as decoding network. This would scale up the image that was downscaled by the encoding

network. This decoding network consists of 4 block. In each block, it has Batch Normalization,

Convolutional layer, ReLU activation. The second route extracts data from the encoding path

by copying and cropping, as well as from the feature vector using up-convolutions, and forms an

output segmentation map via a series of operations. The operation that connects the first and

second pathways is a crucial part of this system. This connection enables the network to obtain

very precise information from the encoding path, resulting in a segmentation mask that is as near

to the intended output as feasible.

We have added attention block in this U-Net model. The attention block consists of Convolution

layer for both decoder and encoder, activation layers. These attention blocks are placed in each

skip connections that connects encoder and decoder.

Talking about the loss function, we have implemented weighted boundary loss and binary cross

entropy dice loss. Using only binary cross entropy or dice loss for these highly imbalanced segmen-

tations would not yield good results. Such localised summations have values that differ by many

orders of magnitude across classes for extremely imbalanced segmentations, affecting training per-

formance and stability.

Apart from the U-Net model training, we have also used Transfer Learning technique in the

segmentation. We have considered EfficientNetB[0-7]. We follow the same technique in this section

as we did in the previous section. The last layer was removed, and the picture’s features were

retrieved. We then used standard neural networks to train the model to adapt to the features.

V. EXPERIMENTS

In this section we present our different experiment setups that we have considered. To start with

we present the experiment considerations in the classification model. We give brief introduction of

the pre-trained models.

1. ResNet50

Residual convolutional network (ResNet) is one of the most popular deep structure, which is

used for classification problem (winner of ImageNet competition in 2015). Residual blocks

enable the network to provide a direct path to its early layers. This helps the gradient flow

easily in the backpropagation algorithm.
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2. InceptionResNetV2

Szegedy et al. presented a novel structure that helps to go deeper through convolution

networks. Deep networks are prone to overfitting. They solve this solution using inception

blocks. Furthermore, they use residual blocks and create InceptionResNetV2, which uses

the combination of residual and inception blocks wisely.

Architecture Paper Input Size Number of Features Number of Parameters

ResNet50 2015 224 X 224 1,00,352 2,35,87,712

InceptionResNetV2 2015 299 X 299 98,304 5,43,36,736

TABLE III: Information About Two Considered Architectures for Transfer Learning.

High-level information about these pretrained models is shown in Table III. As shown in Fig.

2, network weights are kept frozen during the transfer learning procedure. The size of our input

images is 224×224 for ResNet50. The input size for the InceptionResNetV2 architecture is 299×299

.

The COVID-19 detection is a binary classification problem where the input is an image (chest

X-ray or CT image) and the output is a binary label representing the presence or absence of

COVID-19. Here, images are first processed by the convolutional layers of two pretrained networks.

Hierarchically extracted features are then processed by multiple classifiers. We use eight classifiers

to process features: k-nearest neighbors (kNNs), Polynomial support vector machine (linear SVM),

Radial basis function (RBF) SVM, Random Forest (RF), Multilayer Perceptron (NN), Adaboost,

Naive Bayes, and XG Boost.

Coming to Segmentation model, we state of cosnideration here. We took EfficientNetB[0-7] for

transfer learning technique and general deep U-Net for another dataset.

• EfficientNet

EfficientNet is a convolutional neural network design and scaling approach that uses a com-

pound coefficient to scale all depth/width/resolution dimensions evenly. The EfficientNet

scaling approach consistently increases network breadth, depth, and resolution with a set

of preset scaling coefficients, unlike standard practise, which adjusts these parameters ran-

domly.

We followed the same technique as mentioned in the Fig. 2. Coming to the U-Net part, we
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considered various hyper-parameters. The hyper-parameters includes Block size, Epochs, Batch

Size, Learning Rate.

Block Size Epochs Batch Size Learning Rate

4 100 32 1*10ˆ-5

6 200 64 5*10ˆ-5

300 128
Cosine Annealing

Learning Rate Scheduler

400

500

TABLE IV: Table representing different hyper-parameters. We tried all the combination of these

4 different hyper-parameters.

VI. EVALUATION METRICS

For the Evaluation of the models, we have used various metrics that conveys the performance

of the model. The metrics are:

1. Accuracy

2. F1-score

3. Recall

4. Precision

5. Specificity

6. Dice Coefficient

7. Jaccard Index

A confusion matrix is a table that is frequently used to describe the performance of a classification

model on a set of test data with known true values. It contains TP (True Positive),TN (True

Negative),FP (False Positive),FN (False Negative).

Accuracy : The simplest intuitive performance metric is accuracy, which is just the ratio of

properly predicted observations to all observations.

Accuracy =
TP + TN

TP + FP + TN + FN
(3)
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Precision : Precision is the ratio of correctly predicted positive observations to the total predicted

positive observations.

Precision =
TP

TP + FP
(4)

Recall/Sensitivity : Recall is the ratio of correctly predicted positive observations to the all

observations in actual class.

Recall =
TP

TP + FN
(5)

Specificity : It is also known as True Negative Rate. It refers to the proportion of those who

received a negative result on this test out of those who do not actually have the condition.

Specificity =
TN

TN + FP
(6)

F1-score/Dice coeff : The weighted average of Precision and Recall is the F1-score. As a result,

this score considers both false positives and false negatives.

F1score =
2TP

2TP + FN + FP
(7)

Jaccard Index : It is also known as Intersection over Union. It is the ration of True positive to

sum of True positive, False Negative and False Positive.

IoU =
TP

TP + FN + FP
(8)

VII. SIMULATIONS AND RESULTS

In this section we present our simulations and results of both Classification and Segmenta-

tion. We tested our Classification Model on 2 different datasets. The results are attached in the

Classification section. We tested our Segmentation Model on 2 different datasets using 2 different

approaches.The results are attached in the Segmentation section.

We use the Grad-CAM idea to demonstrate the efficacy of extracted features. Because it

requires certain inputs and produces some outputs in such a way that no one knows how it works,
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neural network design is sometimes referred to as a ”black box.” Gradient-weighted class activation

mapping (Grad-CAM) provides visual explanations of how our model makes decisions (spatial

information obscured by layers). This may be calculated by backpropagating the target gradients

via the convolutional layers, resulting in a heatmap. The most significant locations of input for

the categorization choice will be highlighted in this heatmap.

We use the same structure that can locate the most relevant pixels in a typical image to forecast

a given label to obtain insight into our suggested model. Figure 4 depicts the Grad-CAMs and

heatmaps of four photos, demonstrating how our ResNet50 functions.

(a) (b) (c) (d)

FIG. 4: Grad-CAMs and Heatmaps show how our model makes decision. (a) Grad-CAM of X-ray.

(b) Heatmap of X-ray. (c) Grad-CAM of CT-scan. (d) Heatmap of CT-scan.

FIG. 5: Comparison of the test results with the original snapshots.
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FIG. 6: Dice Coefficient vs Epoch and Loss vs Epoch of U-Net Attention model which iterated

for 50 epochs, 32 batch size,and using cosine annealing learning rate scheduler.

A. Classification

In the Tables V and in VI we showcase our results of our model on CT-scans using ResNet50

and InceptionResNetV2 respectively. The model is evaluated based on accuracy, F1 score, recall,

precision, and specificity. Because both data sets, particularly the X-ray one, are skewed, relying

just on accuracy might lead to misleading conclusions. We train each classifier 100 times using

characteristics derived from pretrained CNNs in order to achieve statistically valid results. The

performance measurements are calculated for each run. It should be emphasised that those figures

were derived without the use of PCA for all classifiers that had been trained 100 times (all features

passed to classifiers).

The Tables VII and VIII represents the scores of our model on X-ray Dataset. We train and

assess each classifier 100 times to compare alternative feature extraction architectures in depth.

Then we use the average of all predictions to get a credible sample label estimate. The accuracy,

f1 score, precision, sensitivity, and specificity of the results are then determined. The reported

values are expressed as a percentage. After comparing all models, we discovered that none of

them outperformed the others in the majority of circumstances. For each model, linear SVM also

produces the best results. We can also see that the ResNe50 outperforms the InceptionResNetV2

in both CT-scan and X-ray datasets. We also need to look at the Uncertainity quantification
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Model Classification Accuracy F1 score Recall Precision Specificity

ResNet50 SVC (“Polynomial”) 91.23783763 91.23783763 91.45333333 91.89701293 92.09873621

SVC (“RBF”) 92.34310992 92.34310992 92.38333333 93.12983043 93.46781230

Random Forest 89.97354672 89.97354672 88.66666667 89.78637982 90.00962121

Neural Network 95.76436721 95.76436721 95.5 96.67379291 96.97361231

KNN 90.23123423 90.23123423 89.8333333 90.37599391 90.78112342

Adaboost 87.63692712 87.63692712 85.1333333 86.59302893 86.91341743

Naive Bayes 90.3333333 90.3333333 90.66666667 91.94809093 92.00341674

XGBoost 94.0833333 94.0833333 93.5 94.98098012 95.16934313

TABLE V: Table showing the scores on Large CT-scan dataset using the ResNet50 model.

Model Classification Accuracy F1 score Recall Precision Specificity

InceptionResNetV2 SVC (“Polynomial”) 79.25 78.36192873 75.12987231 77.29790892 81.29872980

SVC (“RBF”) 80.125 79.12878890 79.09281923 79.28978712 82.98701293

Random Forest 81.5 80.87465823 79.99098211 80.12798790 83.82789072

Neural Network 85.4375 84.83873847 83.44909812 84.00982131 87.18731291

KNN 81.125 80.28773711 79.12870192 77.18912731 82.89379842

Adaboost 81.4375 80.12734721 80.83910212 75.12837912 83.28972131

Naive Bayes 45.5 53.34834789 71.28731789 41.76187236 50.23816231

XGBoost 84.25 83.34893741 83.12809821 84.29732018 87.21379871

TABLE VI: Table showing the scores on Large CT-scan dataset using the InceptionResNetV2.

associated with the scores of each classification model. For example, take Adaboost the scores on

both the datasets are exceptional but the uncertainty is near to 1 which is very bad. So, we have

to consider both scores and uncertainty in order to rely on a particular model.

B. Segmentation

In this section we present our results of our two segmentation methodologies. The Table IX

shows the results of transfer learning technique we used in segmentation model. The Table X

shows the results of segmentation model using U-Net framework. In the Table IX we have used

Efficient Net b[1-7] as our pretrained models. The X-ray and CT-images were given as input for the

pretrained model, and extracted the features from the last layer by disconnecting fully connected

layers in the Efficient Net. By using Efficient Net b7 we got Dice coefficient as 0.76 and IOU
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Model Classification Accuracy F1 score Recall Precision Specificity

ResNet50 SVC (“Polynomial”) 85.83333333 85.12938791 85.12938791 85.12938791 83.67587667

SVC (“RBF”) 86.83333333 85.82398213 85.82398213 85.82398213 82.93749013

Random Forest 79.16666667 78.34309873 78.34309873 78.34309873 75.23792817

Neural Network 88.5 88.10982838 88.10982838 88.10982838 87.29013821

KNN 80.16666667 79.78190823 79.78190823 79.78190823 78.21831098

Adaboost 79.5 78.23982730 78.23982730 78.23982730 79.21397830

Naive Bayes 75.16666667 73.73897901 73.73897901 73.73897901 72.23981290

XGBoost 87.83333333 85.34310809 85.34310809 85.34310809 85.09830129

TABLE VII: Table showing the scores on Large X-ray dataset using the ResNet50 model.

Model Classification Accuracy F1 score Recall Precision Specificity

InceptionResNetV2 SVC (“Polynomial”) 75.83333333 75.23098130 75.23098130 75.23098130 75.23098130

SVC (“RBF”) 76.83333333 76.12938214 76.12938214 76.12938214 76.12938214

Random Forest 78.16666667 77.31840123 77.31840123 77.31840123 77.31840123

Neural Network 80.66666667 78.39048101 78.39048101 78.39048101 78.39048101

KNN 73.33333333 71.09231908 71.09231908 71.09231908 71.09231908

Adaboost 69.67777777 65.21398092 65.21398092 65.21398092 65.21398092

Naive Bayes 62.33333333 59.21930934 59.21930934 59.21930934 59.21930934

XGBoost 79.16666667 76.34789341 76.34789341 76.34789341 76.34789341

TABLE VIII: Table showing the scores on Large X-ray dataset using the InceptionResNetV2.

(Intersection over Union) as 0.612. In the Table X, we have used general U-Net framework along

with various hyperparameters. Regarding hyperparameters we considered Block size, epochs, batch

size, learning rate. By using block size as 6, epochs as 500, batch size as 64, learning rate as cosine

annealing learning rate scheduler with initialization value of 1 ∗ 10−5 we got our best results of

Dice coefficient 0.86 and IOU (Intersection over Union) 0.754. On comparing both the results on

2 different datasets we can say that the U-Net framework is performing better than the transfer

learning technique using EfficientNet in this scenario.

VIII. COMPARISON TO STATE-OF-THE-ART METHODS

We compare our model with the state-of-the-art methods on the COVID-19 Dataset. Tables XI

,XIIs hows the comparision results with U-Net [16], U-Net+[17], Mask-RCNN [18], BlitzNet [19],
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Model Type Epochs Dice Coeff IOU

Transfer Learning Efficient Net b1 400 0.72 0.5625

Efficient Net b2 400 0.74 0.587302

Efficient Net b3 400 0.69 0.526718

Efficient Net b4 400 0.7 0.538462

Efficient Net b5 400 0.75 0.6

Efficient Net b6 400 0.73 0.574803

Efficient Net b7 400 0.76 0.612903

TABLE IX: Table showing the results of Transfer Learning technique used in segmentation model.

Yolact [20], SOLO[21]. Codes of these methods are publicly available, and we follow the authors’

instructions to retrain the models on the COVID-19 dataset.
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Model Size Epochs Learning Rate Dice Coeff IOU

U-Net 4 100 0.0005 0.75 0.6

4 200 0.0005 0.76 0.612903

4 300 0.0005 0.75 0.6

4 400 0.0005 0.78 0.639344

4 500 0.0005 0.8 0.666667

6 100 0.0001 0.72 0.5625

6 200 0.0001 0.73 0.574803

6 300 0.0001 0.75 0.6

6 400 0.0001 0.78 0.639344

6 500 0.0001 0.81 0.680672

6 100 0.0005 0.76 0.612903

6 200 0.0005 0.77 0.626016

6 300 0.0005 0.79 0.652893

6 400 0.0005 0.81 0.680672

6 500 0.0005 0.82 0.694915

4 100 cosine(5* 10ˆ-5) 0.69 0.526718

4 200 cosine(5* 10ˆ-5) 0.69 0.526718

4 300 cosine(5* 10ˆ-5) 0.71 0.550388

4 400 cosine(5* 10ˆ-5) 0.71 0.550388

4 500 cosine(5* 10ˆ-5) 0.72 0.5625

6 100 cosine(1* 10ˆ-5) 0.85 0.739130

6 200 cosine(1* 10ˆ-5) 0.88 0.785714

6 300 cosine(1* 10ˆ-5) 0.84 0.724137

6 400 cosine(1* 10ˆ-5) 0.89 0.801801

6 500 cosine(1* 10ˆ-5) 0.90 0.818181

6 100 cosine(5* 10ˆ-5) 0.77 0.626016

6 200 cosine(5* 10ˆ-5) 0.78 0.639344

6 300 cosine(5* 10ˆ-5) 0.76 0.612903

6 400 cosine(5* 10ˆ-5) 0.74 0.587302

6 500 cosine(5* 10ˆ-5) 0.72 0.5625

TABLE X: This Table shows the results of segmentation model using U-net framework.
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Method IOU Dice Pixel Accuracy

U-Net 66.8 78.9 77.7

Attention U-Net 69.7 82.1 81.4

U-Net+ 67.8 80.2 78.4

Mask-RCNN 67.2 80.7 78.5

BlitzNet 69.5 81.1 81.7

Yolact 58.4 74.2 69.9

SOLO 70.1 83.0 82.4

SRGNet 71.1 83.0 83.2

Mod U-Net Attention (Ours) 81.1 90.4 88.6

TABLE XI: Segmentation and detection comparison among our Modified U-Net Attention model

and other state-of-the-art methods on the COVID-19 dataset - I. [4]

Method IOU Dice Pixel Accuracy

U-Net 52.2 68.6 69.8

Attention U-Net 59.1 74.3 72.5

U-Net+ 53.2 69.5 65.8

Mask-RCNN 53.9 70.1 71.2

BlitzNet 65.8 79.4 77.3

Yolact 48.3 65.2 66.8

SOLO 61.8 76.4 75.3

SRGNet 66.8 80.1 78.5

Mod U-Net Attention (Ours) 75.7 86.2 83.4

TABLE XII: Segmentation and detection comparison among our Modified U-Net Attention

model and other state-of-the-art methods on the COVID-19 dataset - II. [5]

IX. COMPARISON TO OTHER PAPERS

We used a common dataset [31] to simulate our model. The outcomes of our model were then

compared to those of other previously published works. Table XIII demonstrates that our model

performs better than any other model we have looked at.
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Model Dice IOU

Paper-I [32] 77.1 66.86

Paper-II [33] 80.4 67.2

Paper-III [34] 75.8 61.3

Paper-IV [35] 83.1 71.08

Paper-V [? ] 70.3 54.2

Ours 90.4 81.1

TABLE XIII: In this table we present the comparision results

X. CONCLUSION

We have proposed an effective model to jointly detect and segment the lesions of COVID-19.

For segmentation, our model simply takes into consideration the covid positive pictures. We can

save a lot of processing power and time this way. We don’t have to worry about the dataset being

imbalanced because we factored in weighted boundary loss and binary cross entropy dice loss. The

experimental results have demonstrated the superior performance of our model. However, there

are still some limitations worth noting.

To begin with, the identification and segmentation of the COVID-19 lesion region are signif-

icantly reliant on clinical expert annotation, which is time-consuming and influenced by existing

information. Second, COVID-19’s afflicted region has imaging characteristics with other pneumo-

nia viruses. We don’t include other viral pneumonia for comparison because each cause hasn’t

been confirmed. Finally, CT scans obtained by various devices will obstruct the algorithm’s ad-

vancement.

In the future, we want to enhance the number of COVID-19 annotated cases and invite more

experts to verify the accuracy of the annotated data. We also intend to incorporate data on

pneumonia caused by additional viruses and retrain the data to increase the algorithm’s resilience.
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